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Abstract. The maximum number of independent third-order elastic- %d secondarder 
piezomagnetic constants required by the seven pentagonal poiit_groups 5.5, 10, 52, 5m, 32m, 
and <Om2 and the two icosahedral point groups 235 and 2/&5 that represent the symmetries 
of quasi-cystals in Iwo and three dimensions are obtained in this paper. The non-vanishing and 
independent tensor components needed, by each of these nine point groups with fivefold rotations 
are identified and tabulated. The results of this group-theoretical study ax briefly discussed and 
summarized. 

1. Introduction 

Ever since Schechtman et al (1984) in an exciting experiment on manganese-aluminium 
alloy (AlgsMnl4) observed a diffraction spectrum with fivefold symmetry, inconsistent with 
the usual  lattice translation for periodic crystals, there has been tremendous progress in 
theoretical and experimental research activity (see, e.g., Levine and Steinhardt (1984), 
Gratias and Michel (1986) and Mackay (1987)) towards understanding these structures 
to determine whether the discovered alloys are indeed quasi-crystals. This study culminated 
in the detection of many alloys exhibiting icosahedral phases similar to A14Mn; the rapid 
solidification of 'an aluminium-copper-lithium quasi-crystal (Al&uLi,) by Dubost et al 
(1986) and Bartges et a1 (1987), the optically active transparent rare-earth pyrogerminate 
(RPG) quasi-crystal (RzG~07)  and thulium pyrogerminate (TmPG) with a unique crystal- 
field potential of FOm2 p 5 h )  site symmetry by Sen Gupta et al (1988) and the latest 
quasi-cfystals with simple metals such as AlZu-Fe, Al-Mg-Zn (Carlsson 1991) and the 
Al-Cu-Ru quasi-crystals reported by Vincenzo (1989) are only a few interesting recent 
additions to the class of quasi-crystalline materials exhibiting fivefold rotational symmetry. 
The quasi-crystal model thus remains a leading explanation for these new alloys. 

Experimental measurements of the physical properties of the icosahedral phases of Al- 
Mn and other related alloys have been hampered by the fact that the grain size has  been 
very small (less than 50 Wm). The recent discovery of new alloys with much larger single 
grains in AlsCuLi, by Sainfort and Silcock (1985), Dubost et a1 (1986) and Bartges et 
al (1987) and the rapid solidification of the A163CUzsFe1z quasi-crystal by Biggs et a1 
(1990) promise improvement in this regard. Although definitive (experimental) results.on 
the physical properties of quasi-crystals have not been published to date-so far as the 
present authors know-extensive theoretical progress has been made in recent years on 
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the stability, the hydrodynamic theory, and the elastic, photo-elastic, piezoelectric and a 
few magnetic properties of quasi-crystalst: Levine et nl (1985) developed theories for 
elasticity and dislocation defects in two-dimensional (2D) pentagonal and three-dimensional 
(3D) icosahedral quasi-crystals. B A  (1985) studied the symmetry, stability and elastic 
properties phenomenologically of icosahedral diffraction patterns and obtained the acoustic 
phonon and phason modes. Sen Gupta et a1 (1988) worked out the crystal-field effects on the 
magnetic properties of TmPG and obtained expressions for magnetic susceptibility tensors 
under a crystal field of D5h symmetry. Brandmuller and Clauss (1988a, b) have calculated 
the irreducible tensors o f  rank I 4  (without intrinsic symmetries) for all the irreducible 
representations (IRS) of the pentagonal and icosahedral point groups which ate useful for 
interpreting Raman and hyper-Raman scattering. Jiang Yi-Jian eta1 (1990) have obtained the 
first order piezoelectric and photoelastic tensor coefficients and second-order elastic tensor 
coefficients for all the nine point groups with fivefold rotations and on the basis of these 
results derived the Brillouin tensors with such symmetries. In a recent communication, the 
present authors (Rama Mohana Rao and Hemagiri Rao 1992) with the employment of group- 
theoretical methods have obtained the maximum number of non-vanishing and independent 
piezomagnetic, pyromagnetic and magnetoelectric polarizability constants required for all 
the point groups with fivefold rotations and determined the non-vanishing and independent 
tensor coefficients corresponding to the magnetic properties considered. 

The purpose of the present paper is twofold, namely 

(i) to obtain through group-theoretical methods the number of non-vanishing and 
independent third-order elastic coefficients and second-order piezomagnetic coefficients for 
the seven pentagonal point groups 5 ( ~ 5 ) ,  3(sl0), io(cSh), i o m z ( ~ ~ , , ) ,  52(D5), 5n(c5,) 
and b i Z ( D 5 d )  and the two icosahedral point groups 235 (I) and 2/m%(Ih) which are the 
quasisrystals' symmetry groups in two and three dimensions and 

(ii) to identify the surviving tensor components corresponding to these physical 
properties for the point groups considered. 

This paper is organized as follows. In section 2, we discuss briefly the phenomenon of 
third-order elasticity and second-order piezomagnetism and indicate the swucture for their 
compound character, expressed as the product of the characters of the quantities involved 
in defining these two physical properties. In section 3, the procedure for obtaining the 
maximum number of non-vanishing as well as independent third-order elastic and second- 
order piezomagnetic constants in respect of all the nine quasi-crystalline classes is indicated 
and the independent schemes so obtained of the non-vanishing tensor coefficients are 
tabulated. Finally the results obtained in this work are briefly discussed in section 4. The 
notation for the coefficients given in tables 2 and 3 is explained in the appendix. 

2. Third-order elastic and second-order piezomagnetic coefficients: a resume 

2.1. Third-order elasticiry 

In the classical theory of elasticity, the strains ate assumed to be infinitesimal and the 
resulting strain energy function is a homogeneous quadratic function of the strains. However, 
if the strains are not infinitesimal, then terms of third and higher degree in the strains enter 
into the strain energy function (Kaplan 1931). If the initial energy and the initial cubic 

t A comprehensive account of the elasticity of crystals and quasi-crystals has been provided by laic (1986). 
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Table 1. Number ni of independent constants required to describe the third-order elasticity 
and second-order piemmagnetism by the seven pentagonal and two icosahedral quasi-cqstalline 
classes. 

Number of ccmm" required lo describe 
Pentagonal or . ,  

icosahedral Third-order Second-order 
point group elasticity piaomgnetism 

5 12 13 
5 12 13 

11 
l0mZ 9 3 
52 10 4 
5m 10 4 
32m 10 4 
235 '4 0 
2/m3 4 0 

. .  - 
- 10 '0 

dilation of the body are zero, the expression for the energy deformation of a body'can be 
expressed as 

(2.1) 

In equation (2.1), the suffixes take the values 1,2,3 and the summation convention is implied 
with respect to a repeated suffix. Whereas the CLjki are the elastic stiffness coefficients which 
form a fourth-rank tensor, the c i j k i m , ,  are known as the third-order elastic coefficients. 
The latter form a sixth-rank tensor containing 129 components. The intrinsic symmetry 
reduces the maximum number of independent components permissible to 56 (table AI of the 
appendix). Birch (1947) derived the schemes of independent coefficients for all the classes of 
cubic crystals. Bhagavantam and Suryanarayana (1947, 1949) through a group-theoretical 
method obtained the number of independent third-order coefticients in each crystal class 
and in fact corrected Birch's result for one of the cubic classes. Jahn (1949) independently 
confirmed the results of Bhagavantam and Suryanarayana and extended the calculations to 
include isotropic materials, and Hearmon (1953) tackled the general problem of third-order 
elastic coefficients of crystals independently. 

Since the physical property of third-order elasticity represents the relation between the 
symmetric tensor and the square of the symmetric tensor, the 'compound character x ( ~ )  
representing this property is given by 

4 = IC . .  2 y k l v i j v k l  + C i j k l m n v i j v ) k i v ~ m n + ' . ' .  

$)(RQ) = 64c6 f 3 2 ~ 5  - 48c4 8c3 + 16~'. . (2.2) 

In equation (2.2), the positive or negative sign is to be taken according to whether the 
symmetry operation Rb in question is a pure rotation or a rotation-reflection through an 
angle 4 and c = cos @. 

2.2. Second-order piezomagnetism 

It can be seen that the phenomenon of piezomagnetism is the appearance of a magnetic 
moment M (Mi; i = 1,2,3) by the application of stress U  and^ the Gemmagnetic 
coefficients Cjjk of the first order are studied from the governing relation 
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Table 2. The non-vanishing and independent components of the thirdader elastic tensor for 
the seven pentagonal and two icosahedral point groups. 

Point 
P U P  tensor components 

Non-vanishing and independent third-order elastic 

5,  s I 1 1  112 113 114 115 0 
I 12 123 -114 -115 0 

133 0 0 0 
144 145 -115 

155 114 
116 

111 113 114 115 0 
I33 0 0 0 

155 -145 115 
144 -114 

333 0 0 0 
344 0 0 

166 (12) 

344 0 
366 

0 0 145 
0 456 

-114 
0 -145 

-115 
0 

with 166 = i(ll1 - 112); 366 = a ( l l3 -  123): 456= f ( l55 -  144) 

52, 5m, sZm 111 112 I I3 I I4 
I12 123 -114 

133 0 
144 

I l l  I13 I14 
133 0 

155 

333 0 
344 

0 

0 
0 
0 
0 

1 55 

0 
0 
0 

144 

0 
0 

344 

0 
0 

0 

0 
0 
0 
0 

114 
166 

0 

0 
366 

0 
456 

-114 
0 
n 

In (2.3), A4 is an axial vector and U a second-rank symmetric polar tensor. The 
non-vanishing as well as independent first-order piezomagnetic coefficients for the seven 
pentagonal and the two icosahedral point groups have already been derived in an earlier 
paper by the present authors (Rama Mohana Rao and Hemagiri Rao 1992). 

Since the second-order piezomagnetism represents a relation between the axial vector 
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Table 2. (continued) 

Point 
SOUP tensor components 

Non-vanishing and independent third-order e l s ~ ~ c  

io 111 I12 1 I3 0 0 0 
112 123 0 0 0 

133 0 
144 

111 113 0 
133 0 

155 

333 0 
344 

0 

0 
145 
155 

0 
0 

-145 
144 

0 
0 

344 

0 
0 

0 

0 
0 
0 

166 
0 
0 
0 
0 

0 
0 
0 

366 
145 
456 
0 

-145 
0 

166 (10)  

0 
with 166= ~(111-112);366=i(113-123),456=f(155- 144) 

iomz 111 1 I2 113 0 0 0 
112 123 0 0 0 

133 0 0 0 
144 0 0 

155 0 
I66 

111 113 0 0 0 
133 0 0 0 

155 0 0 
144 0 (9) 

166 

344 0 
366 

0 0 0 
0 456 

0 
0 0 

and the symmetrized stress (quadratic Combination of stresses), the coefficients pLi for the 
second-order piezomagnetic effect can be studied from 

with the indices taking the values 1, 2, 3. As the character of the axial vector is given by 
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Table 2. (continued) 

Point Non-vanishing and independent third-order elastic 
group tensor components 

235,2/m% 11 1  112 I13 114 0 0 
I12 123 -114 0 0 

133 0 0 0 
144 0 0 

155 114 
166 

111 113 114 0 0 
133 0 0 0 

155 0 0 (4) 
144 -114 

166 
333 0 0 0 

344 0 0 
344 0 

366 
0 0 0 

0 456 
-114 

0 0 
0 
0 

with 114=112-113; 133=2(112)-113: 144=366= $(113-123). 
155=4[lI1 -5(112)+4(113)J; 166= t(l1l- 112); 
333 = $[4(111) -33(112) +33(113)1; 344= $[Ill t 3(112) -4(113)]; 
456 = i [ l l l  - S(112) t Z(113) +2(l23)] 

1 f 2cos@ and that of the symmetrized stress by 

16c0s4@ j, 8 ~ 0 s ~  @ - 4c0s2 @ + 1 

the compound character representing the second-order piezomagnetism can be expressed as 

$'(R$) = (1 f 2cos@)(16cos4 @ i 8 cos3 @ - 4 cos' @ + 1) 12.5) 

with the understanding as before about the alternative signs when they occur. 

3. Third-order eIastic and second-order piezomagnetic coefficients 

The group-theoretical method employed to obtain the desired coefficients is a straightforward 
application of the method used hitherto to analyse periodic crystals (Bhagavantam and 
Suryanarayana 1947, 1949, Hearmon 1953) and also quasi-crystals (Rama Mohana Rao and 
Hemagiri Rao 1992). The numbers ni of the independent thud-order elastic coefficients 
and second-order piezomagnetic coefficients for all the nine quasi-crystalline classes are 
obtained here with the help of the factor groups Gi/Ci+l contained in the composition 
series that exist among these nine point groups mama Mohana Rao and Hemagiri Rao 
1992). The enumeration i s  done by considering 
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Table 3. Non-vanishing and independent components of the second-order piezomgnetic tensor 
for the seven pentagonal and two icosahedral point groups. 

Point Non-vanishing and independent ymd-order 
group piezomagnetic tensor 

5.5 ' 1 1 1  -111 0 114 115 116 
111 ' 0 I24  125 -116 

0 134 135 0 
0 0 146 

0 156 
-111 

116 -116 0 125 -124 -111 
116 0 115 -114 111 

. ~ .  

0 135 -134 0 (13) 
0 0 -156 

0 146 
-116 

311 3 12 313 0 0 0 
311 313 0 0 0 

344 0 
366 

with 146= t ( l l5-  125); 156= i(124- 114); 366= i(311 -312) 

io 0 0 0 114 115 0 
0 0 124 125 0 

0 134 135 0 
0 0 146 

0 156 
0 

0 0 0 125 -124 0 
0 0 115 -114 0 

0 135 -134 0 (11) 
0 0 -156 

0 -146 
0 

311 313 0 0 '0 
333 , ~ 0 0 0 

344 0 0 
344 0 

366 

31 1 312 313 0 0 0 '  

with 146=i(115-125); 156=1(124- 114);366=f(311-312) 

(i) the total symmetric IR of the factor group G ,  f G,+I in the composition series 

G = Go 3 GI 3 . .  . 3 GI 3 G,Ii 3 ... 3 G ,  = E .  

(ii) the character ,ye(&) and xp(R6) corresponding to the element R+ in the 
representation provided by the two physical properties considered (as given in equations (2.2) 

(ni) the definition of the character of a coset for any physical (magnetic) property (Rama 

(iv) the well known formula (Bhagavantam and Venkatarayudu 1951) 

and (2.31, 

Mohana Rao and Hemagiri Rao 1992) and 
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Table 3. (continued) 

Point Non-vanishing and independent second-order 
E ” U P  piezomagnetic tensor 

iomz 0 0 0 I14 0 0 
0 0 I 24 0 0 

0 134 0 0 
0 0 0 

0 156 
0 

0 0 0 0 -124 0 
0 0 0 -114 0 (3) 

0 0 -134 0 
0 0 156 

0 0 
0 

0 0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 
0 0 0 

0 0 
0 

with 156 = $(I24 - 114) 

52.5m. 52m 111 - 1 1 1  0 114 0 0 
1 1 1  0 124 0 0 

0 134 0 0 
0 0 0 

0 156 
-111 

0 0 0 0 -124 - 1 1 1  
0 0 0 -114 111 

0 0 -156 
0 0 

0 
0 0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 

0 0 -134 0 (4) 

0 0 0 
0 0 

235,2/m% 
with 156 = $(I24 - 114) 

0 
0 (0) 

with the usual notation. 

The results obtained for all the seven pentagonal and two icosahedral point groups for 
the physical properties considered are presented in table 1. 

The non-vanishing and independent tensor components in respect of each of the nine 
quasi-crystalline classes for the two physical properties are identified through a method 
similar to those of Birch (1947) and Hearmon (1953). We have calculated these components 
by solving the equations which arise when imposing the condition that the tensors are 
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invariant under the elements of the point'groups. The procedure is simplified here by 
considering the various point groups in the composition series and obtaining the non- 
vanishing components for Gi in the series, from those of the independent components 
of Gi+l by the application of the appropriate generator(s) gi that generates Gi from Giil. 
The final results are provided in tables 2 and 3. The notation for the independent tensor 
components given in these two tables is explained in the appendix. 

4. Discussion and summary of the results 

The method adopted here for obtaining the elastic and piezomagnetic coefficients has the 
following advantage, namely it avoids considering each of the nine quasi-crystalline classes 
separately. The tensor components of a quasi-crystalline class Gi are obtained in a simple 
and elegant way from those of the components of a normal subgroup Gi+] in the series by 
just applying the appropriate generator@) g; that generates Gi from Gj+,. 

It can be observed that, in respect of piezomagnetism, the nine classes divide into two 
categories: 

in fact two such classes: 235 and 2/m%) and 

and second-order effects. 

(a) those classes which do not need piezomagnetic coefficients of any order (there are 

(b) those which need piezomagnetic coefficients but with different numbers for the first- 

Whereas  for^ first-order piezomagnetism the seven pentagonal classes separate into 
two sets (5, 4, CO; 52, 5m, iOm2,.32m) requiring four coefficients and one coefficient, 
respectively (Rama Mohana Rao and Hemagiri Rao 1992), for the second order, these 
classes separate into four sets (5 ,  5; 52, 5m, 32m; CO; CO%) requu'ing~l3, four, 11 and 
three coefficients, respectively. 

In the case of elasticity, it can be observed that the elastic coefficients increase with 
increasing order of @e effect. For the elastic coefficients of third order, the nine quasi- 
crystalline classes divide .into four sets, whereas for second-order elasticity (Jiang Yi-Jian 
et a1 1990) they divide into two sets, each of the seven pentagonal classes requiring five 
coefficients and the two icosahedral classes requiring two coefficients each. We find here 
that the seven pentagonal classes are split into three sets (5,  3 ; ~  CO, 52, 5m, 32m; iOm2) 
requiring different numbers of coefficients (12, 10 and nine, respectively) and the two 
icosahedral classes forming a single set requiring four coefficients each. From table 1, one 
can see that there are only four independent third-order elastic constants for the icosahedral 
point groups, fewer than in any of the seven pentagonal classes and the 32 crystallographic 
point groups. 

It is interesting that the maximum number of independent thud-order elastic coefficients 
needed for the icosahedral class is four and the corresponding number for the isotropic 
medium is three, whereas the maximum number of elastic coefficients of second order for 
the icosahedral system and that for the isotropic medium are the same, namely two. 

Not much experimental work seems to have been carried out on the study of physical 
properties of quasi-crystals as far as we know. We suggest that the group-theoretical work 
presented here on the two physical properties withrespect to the pentagonal and icosahedral 
quasi-crystalline classes will be useful in further theoretical studies. Our results  may^ also 
serve as valuable checks on the experimental studies pertaining to these physical properties 
for the class of new materials. 

~ 



5522 K R  MRao and P H Rao 

Table Al. The scheme showing the non-vanishing and independent components of the third- 
order elastic tensor for the point group 1. 

Point group Non-vanishing and independent tensor components 

I 111 112 113 114 115 116 
122 123 124 125 126 

133 134 135 136 
144 145 146 

155 156 
166 

222 223 224 225 226 
233 234 --235 236 

244 245 246 (56) 
255 256 

266 
333 334 335 336 

344 345 346 
355 356 

366 
444 445 446 

455 456 
466 

555 556 
566 
666 
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Appendix 

The third-order elastic tensor Cij"". is invariant with respect to an interchange of one 
or the other of i, j or k ,  I or m, n, and also to an interchange of any of the three 
pairs ij, kl and mn' with another. A sixth-rank tensor of three variables can in general 
have 36 = 729 components. The intrinsic symmetry reduces the maximum number of 
independent components permissible to 56. This reduction can be obtained by writing the 
tensor components in the three-suffix notation as C;jk. It is immediately seen that the 
independent components are those Cip which have suffixes taking values from 1 to 6 such 
that i < j < k .  The maximum number of such coefficients is 56 and these are given in 
table A 1. 

The second-order piezomagnetic tensor d;jjklm is invariant with respect to interchange 
of j with k or 1 with m and also to an interchange of any of the two pairs j k  and 
lm with another. A fifth-rank tensor of three variables can in general have 3' = 243 
components. The intrinsic symmetry reduces the maximum number of independent 
components permissible to 63. This reduction can be obtained by writing the tensor 
components in the three-suffix notation as dijk. It is immediately seen that the independent 
components are those dijk whose suffixes take values 1 < i < 3 and 1 < j ,  k < 6 with 
j < k .  The number of such coefficients is 63 which are given in table A2. 
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Table A2. Scheme showing the non-vanishing and independent components of the second-order 
piezomagmtic tensor for the point group I. 

Point group Non-vanlshmg and independent tensor components 

1 111 112 113 114 115 116 
122 123 124 125 126 

133 134 135 136 
I44 145 146 

155 156 
166 

211 212 213 214 215 216 
222 223 224 225 226 (63) 

233 234 235 236 
244 245 246 

255 256 
266 

311 312 313 314 315 316 
322 323 324 325 326 

333 334 335 336 
344 345 346 

355 356 
366 

The complete list of third-order elastic coefficients Cijk are given in the second column 
of table 2. Similarly the second-order piezomagnetic coefficients'dijx are given in the second 
column of table 3.~ To avoid excessive use of the suffixes, the letter c is omitted from table 2 
and d from table 3. Thus an entry such as 11 1 in table 2, for example, stands for CI I I ,  and 
an entry such as 124 in table 3 stands for dtw. 
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