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Abstract. The maximum number of independent third-order elastic and second-order
piezomagnetic constants required by the seven pentagonal point groups 5, 5, 10, 52, 5m, S2m,
and 10m2 and the two icosahedral point groups 235 and 2/m35 that represent the symmetries
of quasi-crystals in two and three dirhensions are obtained in this paper. The non-vanishing and
independent tensor components needed by each of these nine point groups with fivefold rotations
are identified and tabulated. The results of this group-theoretical study are bneﬁy discussed and
sumtharized.

1. Introduction

Ever since Schechtman ez al (1984) in an exciting experiment on nanganese—aluminium
alloy (AlgeMn,,) observed a diffraction spectrum with fivefold symmetry, inconsistent with
the usual lattice translation for periodic crystals, there has been tremendous progress in .
theoretical and experimental research activity (see, e.g., Levine and Steinhardt (1984),
Gratias and Michel (1986) and Mackay (1987)) towards understanding these structures
to determine whether the discovered alloys are indéed quasi-crystals. This study culminated
“in the detection of many alloys exhibiting icosahedral phases similar to AlsMn; the rapid
solidification of an aluminium-copper—iithium quasi-crystal (AlgCulis) by Dubost et af
(1986) and Bartges er al (1987), the optically active transparent rare-earth pyrogerminate
(RPG} quasi-crystal (R2Gez(07) and thulium pyrogerminate (TmPG) with a unique crystal--
field potential of 10m2 (Dsy) site symmetry by Sen Gupta et al (1988) and the latest
quasi-crystals with simple metals such as. Al-Cu-Fe, Al-Mg—Zn (Carlsson 1991) and the
Al-Cu~Ru quasi-crystals reported by Vincénzo (1989) are only a few interesting recent
additions to the class of quasi-crystalline materials exhibiting fivefold rotational symmetry.
The quasi-crystal model thus remains a leading explanation for these new alloys.
~ Experimental measnrements of the physical properties of the icosahedral phases of Al-
" Mn and other related alloys have been hampered by the fact that the grain size has been
very small (less than 50 zm). The recent discovery of new alloys with much larger single
grains in AlgCuLi; by Sainfort and Silcock (1985), Dubost et al (1986) and Bartges et
al (1987) and the rapid solidification of the Alg;CupsFejs quasi-crystal by Biggs et al
(1990) promise improvement in this regard. Although definitive (experimental) results on
* the physical properties of quasi-crystals have not been published to date—so far as the
present authors know-—extensive theoretical progress has been made in recent years on
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the stability, the hydrodynamic theory, and the elastic, photo-elastic, piezoelectric and a
few magnetic properties of quasi-crystalst: Levine et al (1983} developed theories for
elasticity and dislocation defects in two-dimensional (2D) pentagonal and three-dimensional
(3D) icosahedral quasi-crystals. Bak (1985) studied the symmetry, stability and elastic
properties phenomenologically of icosahedral diffraction patterns and obtained the acoustic
phonon and phason modes. Sen Gupta et al (1988) worked out the crystal-field effects on the
magnetic properties of TmPG and obtained expressions for magoetic susceptibility tensors
under a crystal field of Dsy symmetry. Brandmuller and Clauss {(1988a, b) have calculated
the irreducible tensors of rank 14 (without intrinsic symmetries) for all the irmeducible
representations (IRs} of the pentagonal and icosahedral point groups which are useful for
interpreting Raman and hyper-Raman scattering. Jiang Yi-Jian et a/ (1990) have obtained the
first order piezoelectric and photoelastic tensor coefficients and second-order elastic tensor
coefficients for all the nine point groups with fivefold rotations and on the basis of these
results derived the Brillouin tensors with such symmetries. In a recent communication, the
present authors (Rama Mohana Rao and Hemagiri Rao 1992) with the employment of group-
theoretical methods have obtained the maximum number of non-vanishing and independent
piezomagnetic, pyromagnetic and magnetoelectric polarizability constants required for all
the point groups with fivefold rotations and determined the non-vanishing and independent
tensor coefficients corresponding to the magnetic properties considered.
The purpose of the present paper is twofold, namely

(i) to obtain through group-theoretical methods the number of non-vanishing and
independent third-order elastic coefficients and second-order piezomagnetic coefficients for
the seven pentagenal point groups 5(Cs), g(Sm), 1-(}(C5h), 10m2(Dsn), 52(Ds), Sm(Csy)
and 32m(Dsy) and the two icosahedral point groups 235 (I) and 2/ m35(I;) which are the
quasi-crystals’ symmetry groups in two and three dimensions and

(i) to identify the surviving tensor components corresponding to these physical
properties for the point groups considered. :

This paper is organized as follows. In section 2, we discuss briefly the phenomenon of
third-order elasticity and second-order piezomagnetism and indicate the structure for their
compound character, expressed as the product of the characters of the quantities involved
in defining these two physical properties. In section 3, the procedure for obtaining the
maximum number of non-vanishing as well as independent third-order elastic and second-
order piezomagnetic constants in respect of all the nine gunasi-crystalline classes is indicated
and the independent schemes so obtained of the non-vanishing tensor coefficients are
tabulated. Finally the results obtained in this work are briefly discussed in section 4. The
notation for the coefficients given in tables 2 and 3 is explained in the appendix.

2. Third-order elastic and second-order piezomagnetic coefficients: a resumé

2.1. Third-order elasticity

In the classical theory of elasticity, the strains are assumed to be infinitesimal and the
resulting strain energy functionisa homogeneous'quadr_atic_: function of the strains. However,
if the strains are not infinitesimal, then terms of third and higher degree in the strains enter
into the strain energy function (Kaplan 1931). If the initial energy and the initial cubic

t A comprehensive account of the elasticity of crystals and guasi-crystals has been provided by Jaric (1986),
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Table 1. Number n; of independent constants re(juired to describe the third-order elasticity
and second-order p1ezomagnettsm by the seven pentagonal and two icosahedral quasi-crystalline
classes. - . )

’ Number of constants reguired to describe
Pentagonal or —

icosahedral Third-order  Second-order

‘point group elasticity piezomagnetism
5 12 13
5 ' T2 = 13
10 L1000 11
Tom2 9 3
52 1o 4
Sm 10 4
5m 10 4
235 4 0
o

2/m35 4

dilation of the body are zero, the expressmn for the energy deformation of ‘a body can be
sxpressed as

P = 3Cijuiiu + Cijttmaii Tt Timn + -+ - o (2.1}

In equation (2.1), the suffixes take the values 1, 2, 3 and the summation convention is implied
with respect to a repeated suffix. Whereas the Cj;y; are the elastic stiffness coefficients which
form a fourth-rank tensor, the Cijum. are known as the third-order elastic coefficients.
The latter form a sixth-rank tensor containing 729 components. The intrinsic symmetry
reduces the maximum number of independent components permissible to 56 (table Al of the
appendix). Birch (1947) derived the schemes of independent coefficiénts for all the classes of
cubic crystals. Bhagavantam and Suryanarayana (1947, 1949) through a group-theoretical
" method obtained the number. of independent third-order coefficients in each crystal class
and in fact corrected Birch’s result for one of the cubic classes. Jahn (1949) independently-
confirmed the results of Bhagavantam and Suryanarayana and extended the calculations to
include isotropic materials, and Hearmon (1953) tackled the genera! problem of third-order
elastic coefficients of crystals independently. :
_ Since the physical property of third-order elasticity represents the relation between the
symmetric tensor and the square of the symmetrlc tensor, the compound character x 0
representmcr this property 15 given by

xT(Ry) = 648 +32¢° —48c* T8> + 16¢%. - V)]

In equation (2.2), the positive or negative sign is to be taken according to whether the
symmetry operation R, in question is a pure rotation or a rotatlon—reﬂectzon through an
angle ¢ and ¢ = cos ¢. :

2.2 Seconéi#érde'r piezomagnetism

“It can be seen that the phenomenbh of piezomagnetism is the appearance of a magnetic
moment M (M;; i = 1,2,3) by the application of stress ¢ and the plezomaonetlc
coefficients C;j; of the first order are studied from the governing relation”

M; = ZZC,,W L k=123 . (2.3)
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Table 2. The non-vanishing and independent components of the third-order elastic tensor for
the seven pentagonal and two icosahedral point groups.

Point Non-vanishing and independent third-order elastic
group tensor contponents
5,5 Y 112 113 114 115 0
112 123 —114 =115 0
133 0 0 0
144 145 113
155 114
116
111 113 114 113 0
133 0 ¢ 0
155 148 115
144 —114
166 (12)
333 0 0 0
344 0 0
344 0
366
0 0 145
0 456
—~114
0 =145
—115
o
with 166 = $(111 — 112); 366 = 3 (113 — 123); 456 = £ (155 ~ 144)
52, 5m, 52m 111 112 113 114 0 0
112 122 —-114 0 0
133 0 0 o
144 0 D
(55 114
166
111 113 114 0 0
£33 0 0 0
155 . 0 0 (10)
144 —114
166
333 0 0 0
344 D ]
244 0
366
0 0 0
0 456
—114
0 0
0
0

with 166 = (111 — 112); 366 = (113 — 123); 456 = § (155 — 144)

In (2.3}, M is an axial vector and o a second-rank symmetric polar tensor. The
non-vanishing as well as independent first-order piezomagnetic coefficients for the seven
pentagonal and the two icosahedral point groups have already been derived in an earlier
paper by the present authors (Rama Mohana Rao and Hemagiri Rac 1992).

Since the second-order piezomagnetism represents a relation between the axial vector
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Table 2. (continued)

3317

Point Non-vanishing and independent third-order elastic

group - tensor CDmPDI_lel’ltS .
10 111 112 113 ) 0 0
112 123 i 0 0
' 133 0 0 0
144 145 0
' 155 0
_ 166
It 113 0 0 0
' 133 0 0 0
155 ~145 0
o144 a
- 166 {10)
333 0 0 0
s 344 0 0
T 344 0
366
0 0 145
0 456
0
0 —145
0
_ . 0
with 166 = I (111 ~ 112); 366 = 3(113 — 123); 456 = 4 (155 — 144)
10m2 It 112 113 0 0 ]
112 123 0 -0 0
133 0 0 0
144 0 0
' 155 0
- o 166
111 113 0 0 0
133 0 0 0
' 155 0 0 :
: 144 0 o
' 166
333 0. 0 0
344 0 0
' 344 0
- 366
0 0 0
0 456
0
0 ]
0
0
with 166 = ~c111 — 112); 366 = (113 — 123); 456 = 1(155 — 144)

and the symmetnzed stress (quadratic combination of stresses), the coefficients g; for the
second-order piezomagnetic effect can be studied from .

My = Z Z Z Z Cijktmgj'ktﬁm
7T

2.4)

with the indices taking the values 1, 2, 3. As the character of the axial vector is given by
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Table 2. (continued)

Foint Non-vanishing and independent third-order elastic
group tensor components :
235, 2/m35 111 112 113 114 0 0
112 123 . -114 0 0
133 0 0 o
144 0 o
155 114
166
11 113 114 0 ]
133 0 0 ]
155 0 0 @
44 114
166
333 0 .0 0
344 0 0
344 0
366
o 0 0
0 456
—114
0 Q
0
0

with 114 = 112 = 113; 133 = 2(112) — L13; 144 = 366 = .4 (113 — 123);
155 = $[111 — 5(112) + 4(L13)]; 166 = (111 — 112);

333 = S[4(111) — 33(112) + 33(L13)]; 344 = L[111 4+ 3(112) — 4(1I3)];
456 = F[111 — 5(112) +2(113) + 2(123)]

1 £ 2¢os¢ and that of the symmetrized stress by
16cos* ¢ =8 cos® ¢ —4dcos® ¢ + 1

the compound character representing the second-order piezomagnetism can be expressed as
X (Rg) = (1 £2cosp)(16cas* § & 8cos® ¢ — 4cos? ¢ + 1) (2.5)

with the understanding as before about the alternative signs when they occur.

3. Third-order elastic and second-order piezomagnetic coefficients

The group-theoretical method employed to obtain the desired coefficients is a straightforward
application of the method used hitherto to analyse periodic crystals (Bhagavantam and
Suryanarayana 1947, 1949, Hearmon 1953) and also quasi-crystals (Rama Mohana Rao and
Hemagiti Rao 1992). The numbers n; of the independent third-order elastic coefficients
and second-order piezomagnetic coefficients for all the nine quasi-crystalline classes are
obtained here with the help of the factor sroups G;/G;., contained in the composition
series that exist among these nine point groups (Rama Mohana Rao and Hemagiri Rao
1992). The enumeration is dene by considering
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_ Table 3. Non-vanishing and independent components of the second-order piezomagnetic tensor
for the seven pentagonal and two icosahedral point groups.

Point " Non-vanishing and independent second-order
Cgroup p1ezomagneuc tensor
55 111 -~111 0 114 115 116
111 0 124 125 —~116
0 134 135 0
: ] 0 146
0 156
_ ‘ —111
16  ~1i6 0 125 —124 —111
116 0 115 —~114 111
Q. 138 —134 0 {13
0 0 =156 -
0 146
_ —116
311 1312 313 0 0 0
311 313 0 0 0
333 0 0 0
344 0 0
344 0
366

with 146 = 1(115 - 125); 156 = 2 (124 — 114); 366 = 1 (311 - 312)

e - 0 0 0 114 115 0
0 0 124 125 0
0 134 135 0
0 0 146
0 156
0
0 0 ¢ - 125 —124 0
0 i} 115 -114 0
0 135 —134 4y
0 0 —156 -
] —146
. 0
311 312 313 0 0 0
311 313 0 0 ]
' 333 -0 0 0
" 344 0 0
344 d
366

with 146 = 1(115 — 125); 156 = £(124 — 114); 366 = 1 (311 — 312) '_

" (i} the total symmetric IR _of the factor group G;/G;41 in the composition series
G=G¢2>G1>...2G DG D...0G, =E.

(i) the character xe(Rs) and xp(R4) corresponding to the element Ry in- the
representation provided by the two physmal properties considered (as given in equations (2.2)
and (2.5)),

(1ii) the definition of the character ofa coset for any physmal (magnet_u:) property (Rama
Mohana Rao and Hemagiri Rao 1992) and

(iv) the well known formula (Bhagavantam and Venkatarayudu 1951)
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Table 3. (continued)

Point Non-vanishing and independent second-order
group piezomagnetic tensor
[om2 0 0 0 114 0 0
0 0 124 0 0
0 134 0 0
0 0 0
0 156
0
0 ] 0 0 124 0
0 0 0 —~114 ] 3
0 1} ~134 0
0 0 156
0 c
0
0 0 0 0 0 0
0 0 0 ) 0
0 0 1} 0
] 1} 0
1} 0
0
with 156 = $(124 - 114)
52, 5m, 52m 111 ~111 0 114 0 0
111 0 124 0 0
0 134 0 0
0 0 0
0 156
—~111
0 0 0 0 —~124 —11!
0 0 0 —114 111
¢ 0 —[34 0 4
0 0 —156
0 0
o
0 0 0 0 0 1}
0 0 0 0 0
0 0 0 0
0 0 0
0 0
0
235, 2/m35 ' ) 0 ()}
with 156 = 3 (124 — 114)
1
m= gy 2o hexs VX D)
P

with the usuval notation.

The results obtained for all the seven pentagonal and two icosahedral point groups for
the physical properties considered are presented in table 1.

The non-vanishing and independent tensor components in respect of each of the nine
quasi-crystalline classes for the two physical properties are identified through a method
similar to those of Birch (1947) and Hearmon (1953). We have calculated these components
by solving the equations which arise when imposing the condition that the tensors are
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invariant under the ¢lements of the point groups. The procedure is simplified here by
considering the various point groups in the composition seriés and obtaining the non-
vanishing components for G; in the series, from those of the independent components
of Gy by the application of the appropriate generator(s) g; that generates G; from Gpy.
The final results are provided in tables 2 and 3. The notation for the independent tensor
components given in these two tables is explained in the appendix.

4. Discussion and summary of the results

. The method adopted here for obtaining the elastic and piezomagnetic coefficients has the
" following advantage, namely it avoids considering each of the nine quasi-crystafline classes

separately. The tensor components of a quasi-crystalline class G; are obtained in a simple
and elegant way from those of the components of a normal subgroup G;. in the series by
just applying the appropriate generator(s) g; that generates G; from G;.y.

It can be observed that, in respect of piezomagnetism, the nine classes divide into two
categories: :

(a) those classes which do not need piezomagnetic coefﬁcuants of any order (there are
in fact two such classes: 235 and 2/m35) and

(b) those which need plezomaﬂnetlc coefficients but with different numbers for the first-
and second-order effects.

VWhereas for- first-order piezomagnetism the seven pentagonal classes separate into
two sets (5, 5, 10; 52, 5m, 10m2,-52m) requiring four coefficients and one coefficient,
respectively (Rama Mohana Rao and Hemagiri Rao 1992), for the second order, these
classes separate into four sets (3, 5; 52, Sm, 52m 10 IOZm) requmng 13 four, 11 and
three coefficients, respectively.

In the case of elasticity,. it can be observed that the elastic coefficients increase with
increasing order of the effect. For the elastic coefficients of third order, the nine quasi-
crystalline classes divide into four sets, whereas for second-order elasticity (Jiang Yi-Jian
et al 1990) they divide into two. sets, each of the seven pentagonal classes requiring five
coefficients and the two icosahedral classes requiring two coefficients each, We find here
that the seven pentagonal classes are split into three sets (5, 5; 10, 52, 5m, 52m; 10m2)
requiring different numbers of coefficients (12, 10 and nine, respectively) and the two
icosahedral classes forming a single set requiring four coefficients each. From table 1, one
can see that there are only four independent third-order elastic constants for the icosahedral

' point groups, fewer than in any of the seven pentagonal classes and the 32 crysta.llographlc

point groups. .

It is interesting that the maximum number of independent thlrd-order clastlc coefficients
needed for the icosahedral class is four and the corresponding number for the isotropic
medium is three, whereas the maximum number of elastic coefficients of second order for

" - the icosahedral system and that for-the isotropic medium are the same, namely two.

Not much experimental work seems to have been carried out on the study of physical
properties of quasi-crystals as far as we know. We suggest that the group-theoretical work
presented here on the two physical properties with respect to the pentagonal and icosahedral
quasi-crystalline classes will be useful in further theoretical studies. Our results may. also
serve as valuable checks on the experimental studies pertaining to these physical properties
for the class of new materials. :
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Table Al. The scheme showing the non-vanishing and independent components of the third-
order elastic tensor for the point group 1.

Point group Non-vanishing and independent tensor components

1 ir 112 13 14 115 116
122 123 124 125 126
133 134 135 136
144 145 146
155 156
166
22 23 24 25 26
233 234 _235 236
244 245 246 (56)
255 256
266
333 334 335 336
344 345 346

355 356

- 366

444 445 446
455 456

466

555 556

566

666

Acknowledgmenis

We thank Professor L. 8 R K Prasad, Department of Applied Mathematics, AUPG centre,
Nuzvid, for a helpful discussion on this work and useful suggestions in the preparation
of the manuscript. We also thank the referees and the board member for their comments,
following which the paper has been revised to the present form.

Appendix

The third-order elastic tensor Cijum.-i8 invariant with respect to an interchange of one
~or the other of {, f or k, { or m, n, and also to an interchange of any of the three
pairs ij, kI and mn with another. A sixth-rank tensor of three variables can in general
have 3% = 729 components. The intrinsic symmetry reduces the maximum number of
independent components permissible to 56. This reduction can be obtained by writing the
tensor components in the three-suffix notation as Cij. It is immediately seen that the
independent components are those C;j; which have suffixes taking values from 1 to 6 such
that i € j € k. The maximum number of such coefficients is 56 and these are given in
table Al.

The second-order piezomagnetic tensor d;jy,; is invariant with respect to interchange
of j with k£ or [ with m and also to an interchange of any of the two pairs jk and
Im with another. A fifth-rank tensor of three variables can in general have 3° = 243
components. The intrinsic symmetry reduces the maximum number of independent
compenents permissible to 63. This reduction can be obtained by writing the tensor
components in the three-suffix notation as djj. It is immediately seen that the independent
components are those d;;; whose suffixes take values 1 € < 3 and I < J, £ < 6 with
J < k. The number of such coefficients is 63 which are given in table A2.
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Table A2. Scheme showing the non-vanishing and mdependenr, components of the second order
~ piezomagnetic tensor for the point group 1.

Point group  Non-vanishing and independent tensor components
1 111 112 113 114 115 116
22 123 - 124 125 126
133" 134 135 136
144 145 146
155 156
. 166
©o210 212 213 214 215 216
' 22 2230 224 225 0 226. (63)
233 234 235 236 :
244 245 246
- 255 256
- 266
311 312 313 314 315 36
322 323 324 325 326
333 334 335 336
ToB44 345 346
355 356
2366

The complete list of third-order elastic coefficients C;j; are given in the second column
of table 2. Similarly the second-order piezomagnetic coefficients i, are given in the second
column of table 3. To avoid excessive use of the suffixes, the letter ¢ is omitted from table 2
and d from table 3 Thus an entry such as 111 in table 2, for example, stands for ¢;;;, and

" an entry such as 124 in table 3 stands for djaa.
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